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A quantitative method for the detection
of edges in noisy time-series

D. A. Smith
Randall Institute, King's College, 26^29 Drury Lane, LondonWC2B 5RL, UK

A modi¢cation of the edge detector of Chung & Kennedy is proposed in which the output provides
con¢dence limits for the presence or absence of sharp edges (steps) in the input waveform. Their
switching method with forward and backward averaging windows is retained, but the output approxi-
mates an ideal output function equal to the di¡erence in these averages divided by the standard deviation
of the noise. Steps are associated with peak output above a pre-set threshold. Formulae for the e¤ciency
and reliability of this ideal detector are derived for input waveforms with Gaussian white noise and sharp
edges, and serve as benchmarks for the switching edge detector. E¤ciency is kept high if the threshold is
a ¢xed fraction of the step size of interest relative to noise, and reliability is improved by increasing the
window widthW to reduce false output. For di¡erent steps sizes D, the window width for ¢xed e¤ciency
and reliability scales as 1/D2. Versions with weighted averaging (£at, ramp, triangular) or median aver-
aging but the same window width perform similarly. Binned above-threshold output is used to predict the
locations and signs of detected steps, and simulations show that e¤ciency and reliability are close to
ideal. Location times are accurate to order HW. Short pulses generate reduced output if the number of
data points in the pulse is less thanW. They are optimally detected by choosingW as above and collecting
data at a rate such that the pulse contains approximatelyWdata points. A Fortran program is supplied.

Keywords: edge detector; predictors; e¤ciency; reliability; switching method

1. INTRODUCTION

The detection of `edge' signals in a noisy time-series is
required for many purposes, including the study of
single ion-channel currents through cell membranes
(Sakmann & Neher 1983), and force and displacement
steps generated by single motor proteins using optical
tweezers (Svoboda et al. 1993; Finer et al. 1994). Low-
pass ¢ltering techniques have traditionally been used to
extract signals out of a noisy time-series (Oppenheim &
Schafer 1989), but more sophisticated methods based on
analysis of variance (Mosteller & Tukey 1977), Fourier
or wavelet transforms (Press et al. 1992), or neural
networks (Peretto 1992), are required to detect abrupt
jumps in the signal, where each jump may occur on a
time-scale comparable to or less than the correlation
time of the noise. In many applications the focus is
initially on the detection of individual èdge' events,
rather than the statistical description of the underlying
processes. To avoid making subjective judgements about
each event it is essential to use statistical predictors for
the e¤ciency and reliability of the detector (Block &
Svoboda 1995). Although robust predictors are available
(Kassam & Poor 1985), it is natural to use a super-
position of sharp edges (steps) and Gaussian white noise
as a standard input to which performance criteria can
be referred. Variance-based methods are traditionally
preferred because quantitative predictors of performance
are available by adapting the Student's t-test for the
signi¢cance of the di¡erence in the means of two
populations (Weatherburn 1968).

A variance-based method for edge detection uses two
moving averaging windows of width W, providing
forward and backward local averages of each data point.
A Student's t-statistic at each point can then be
constructed by dividing the di¡erence in the forward and
backward means by the standard error in both windows.
However, this quantity can be conventionally applied to
edge detection only if the edge is located between the two
windows, which is generally not the case. When the edge
occurs within one window, the t-test overestimates the
con¢dence limit (the probability that the di¡erence is due
to noise only). This behaviour arises because the variance
in the window with the edge contains a large contribution
from the edge itself. The contamination of one variance
by an edge was turned to advantage by Chung &
Kennedy (1991) to construct from the input x(t) at time t
a ¢ltered output function Xout(t), which ideally is the
mean input in the window with no edge. To approach this
result, they proposed that the ratio of the variances of x(t)
in each window be used to switch the output to the
average in the window with smaller variance. If the
switching function is sharp enough, it follows that Xout(t)
will show an unbroadened edge in response to a step in
the input, while the noise component of the input is
reduced by averaging. Similar results can be obtained by
median-averaging (Gallagher & Wise 1981) but the latter
is computationally more expensive.

In this paper, Chung & Kennedy's switching technique
is used to de¢ne a dedicated edge detector. For each time,
t, in the input waveform, the output Y(t) is chosen to
approximate an ideal output function equal to the
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di¡erence of the forward and backward averages divided
by the standard deviation of the noise component only.
This quantity is proportional to the Student's t-statistic
for the populations in each window, and can be associated
with con¢dence limits for the presence and absence of an
edge at that time. Thus, the e¤ciency of the detector is
measured by the probability PT(D) that an edge of size D
in the input waveform is detected. Its reliability is
inversely indicated by the rate of generating false output
signals or the probability PF that an edge is detected
when none is present in the input. The threshold Yc for
the absolute value of Y should then be set for maximum
e¤ciency and reliability, that is

PF55PT(D) � 1. (1)

It is convenient to de¢ne Y so that the expected output
from a step of size D is equal to D/� where � is the
standard (root-mean-square) noise level in the input. The
standard noise output in the absence of edges is a function
of the width W of each averaging window, and is of the
order of 1/HW. Hence equation (1) should be obeyed if
the threshold satis¢es

1p
W

55Yc5
jDj
�

, (2)

which is possible for steps of magnitude comparable to
noise by using wide windows. This will cause some loss of
time resolution, but it can be shown that the standard
error in the time of location of a step is proportional to
HW, which for large windows is much less than the
window width. In practice, choosing Yc�2D/3� to detect
steps of size D or greater keeps the detection e¤ciency
close to unity, while W is determined by setting an
acceptable level PF of false output. Figure 1 illustrates the
operation of both forms of the switching edge detector on
a time-series of current interest.

In the next section, Chung & Kennedy's detector is
rede¢ned with the new output function Y and the statis-
tics of its point output are compared with those of the
ideal detector, for which the distribution is known exactly.
Comparisons are made ¢rst in the presence or absence of
a single step. They are easily extended to short-lived
pulses (positive plus negative steps or vice versa) when
the duration of the pulse is less than W. In ½ 3 it is
considered how output should be collated to avoid
multiple detections of the same edge without losing
e¤ciency or location accuracy. Binned output from
numerical simulations (½ 4) is used to calculate e¤ciency,
reliability and location errors as a function of step size
and window width. The binned output cannot easily be
compared with the ideal case, but is used to assess
di¡erent methods of window-averaging. In ½ 5 it is
suggested how the detector might best be used. Readers
not concerned with details or numerical testing should
read ½ 2 and ½ 5 and proceed to ¢gure 4, which gives the
performance curves required for best use.

2. THE SWITCHING EDGE DETECTOR AND ITS IDEAL

Let the input time-series xi be de¢ned at time points
ti� ih (i�1,. . .,NT) spaced by h. Unless stated otherwise,
this series is assumed to consist of a Gaussian random

process and abrupt step changes. Construct moving
averages Xi� and the variances S 2

i� from these averages
over two windows ofW points, forward and backward of
the ith time point:

Xi� �
1
W

XW
k�1

xi�k, s 2i� �
1
W

XW
k�1

(xi�k ÿ Xi�)
2. (3)

The ideal output function Yi is de¢ned as

Yi �
Xi� ÿ Xiÿ

Si
, (4)

where S 2
i is the variance of the noise alone as estimated

from one window. For the moment it is assumed that steps
are sparse enough for one step at most to lie within the
windows; this restriction is relaxed later. Then one
window will always be free of a step and its variance can
be used for this purpose. The statistical motivation for
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Figure 1. (a) Time-series of the displacement of an actin
¢lament tethered by optically trapped glass beads, containing
interaction events with myosin molecules tethered to a
coverslide (A. Trombetta, unpublished data). (b) The
corresponding ¢ltered output function Xout from the switching
detector of Chung & Kennedy (1991), by using W�100.
(c) Y-output from the modi¢ed switching edge detector. The
threshold lines Y��Yc are drawn for Yc�0.333, appropriate
for a minimum step size of half the standard noise deviation in
the input waveform.
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equation (3) is that if the step is at time ti then the x-
values in each window di¡er by noise alone and Yi is
proportional to the Student's t-statistic (Weatherburn
1968) measuring the di¡erence in their means, at least if
the noise variance is the same in both windows.
In practice, the locations of edges are not known in

advance and so Chung & Kennedy (1991) proposed that
the variances de¢ned in equation (3) be used to de¢ne
switching factors

gi� �
S2riÿ

S2ri� � S2riÿ
, giÿ �

S2ri�
S2ri� � S2riÿ

, (5)

and hence their output function Xout(ti)�gi+Xi++gi7Xi7.
The positive exponent r is arbitrary but r441 is required
to produce abrupt switching between 0 and 1 as a func-
tion of the ratio Si+/Si7. However, the same principle can
be used to generate the derivative-like output function in
equation (4) if the `noise-only' variance is approximated
by

S2i � gi�S
2
i� � giÿS

2
iÿ. (6)

Thus equations (3^6) de¢ne a practical switching
detector, while the ¢rst two equations contain the ideal
case.

The nature of the output waveform can be understood
from analysing the signal and noise contributions to Yi
that arise from step signals and Gaussian random noise
respectively in the input. In the ideal case, the denomi-
nator in equation (4) is due to noise alone, but the
numerator is the sum of signal and noise terms. Let �(t)
be the signal component of the di¡erence of the two
means, so that the signal component of the output is �(t)
multipled by the time-averaged inverse standard
deviation (1/S)&1/�. It responds as shown in ¢gure 2b to
a step of size D, with a triangular waveform of width 2W
and a peak value D/� at the time of the step. For large
edges, the peak output measures the size of the step
directly in units of �, and for numerical comparisons � is
set to unity. For smaller steps, noise £uctuations must be
taken into account. In the presence of noise only, Y is
symmetrically distributed about zero with a variance of
2/(W73) (Appendix A, equation (A9)). With an edge
present at, say, time 0 the distribution of Y at time t 6� 0 is
shifted according to the value of �(t), and its most
probable value is close to �(t)/�. Hence the output is
most likely to peak at the time of the edge itself (¢gure
2c), where �(t) has its maximum value D (for D40).
However, noise components in the numerator and
denominator conspire to shift the location and the size of
the maximum in the output waveform.
The virtue of using the Y function as output is that its

probability distribution p(Y j�) for a given value of �
can be calculated from ¢rst principles (Appendix A,
equation (A5)). The probability of above-threshold posi-
tive output (Y4Yc) in the presence of a step de¢ned by �
is given by the integrated distribution

P(Ycj�) �
Z 1
Yc

p(Yj�)dY. (7)

Hence,

PT(D) � P(YcjD), PF � P(Ycj0), (8)

are the probabilities of true output for a positive step of
size D and of false output (output for no step). These
quantities are de¢ned for each point in the time-series,
and the averaging e¡ect of the two windows should not
be forgotten. If the output is measured at a di¡erent time
t to that of the step, then equation (8) gives the prob-
ability of true output if D is replaced by �(t), and of false
output if both windows are step-free. They give input to
the quantitative criteria (equation (1)) by which edge
detectors should be judged, and will be used for
comparing the performance of the switching edge
detector with the ideal case, and with versions using
di¡erent averaging methods.

Figure 3 shows the probability function P(Y jD) as
calculated from equation (A5) for the ideal edge
detector, and as sampled from the switching edge
detector with r�50 and synthetic input containing
Gaussian random noise and steps of ¢xed size D. The
steps were repeated at intervals of 4W for windows of
sizeW to avoid overlaps; further details are given in the
legend. For all step sizes, the sampled distribution from
the detector is close to but slightly higher than the ideal
distribution. This appears to be an e¡ect of ¢nite
sampling which generates slightly di¡erent numbers of
positive and negative output events from Gaussian input,
re£ected in an estimate for P(Yc�0j��0) (the prob-
ability of positive output from noise) not equal to 0.5. To
make PT close to 1 and PF close to 0 (equation (1)), the
knees of the distributions for D40 and D�0 should be
widely separated and the threshold Yc set between them.
The choice

Yc �
2D
3�

, (9)

is su¤ciently below the most probable value D/� of Y to
give detection e¤ciencies near unity in almost all cases of
interest (above 94% for D/�40.5 andW520). However,
for small steps the distribution of signal output tends to
overlap the noise distribution, and the probability of false
output can be kept below 5% only if D/�40.84 for
W�20 or 0.35 forW�100. These and other values can be
obtained from table 1.

For short pulses, the distribution of output can be
obtained without further calculation, because the value of
Y at any time t is controlled by the di¡erence �(t) of
mean values arising from the signal component of the
input. For a step +D followed by a step 7D after time �,
the peak value of j�(t)j is reduced from D to D� /W if
�5W (¢gure 2e). Therefore, in this case each step is
detected with con¢dence limits equal to those for an
isolated step of reduced amplitude Deq�D� /W.
The output function Y(t) can predict the locations and

signs (+ or 7) of detected steps, and this type of output
requires much less storage. Although each value of Y(t)
above Yc detects a step up and each value below 7Yc a
step down, there will usually be far more above-threshold
values than input steps. Some of this redundancy is owing
to multiple detections of the same step, because the di¡er-
ence of the two window averages generates a triangular
pulse of width 2W from a sharp edge (¢gure 2b). Hence
the output function should be collated into time bins
whose width is comparable withW. Binning is a necessary
preliminary to generating logical output.
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3. RULES FOR BINNED LOGICAL OUTPUT

To produce a list of the times and signatures of detected
steps, the raw output Y(t) must be examined for above-
threshold peaks. Multiple detections of the same edge will
arise from noise £uctuations which add to the triangular
response function �(t), while opposing £uctuations may
cause edges to be missed. Multiple output events can be

reduced or avoided altogether by deleting peak events
that are too close to other peaks. Consider the following
binning procedure for detecting positive steps, which
operates by deleting apparent steps within E data points
of each other: (i) for each time point ti with above-
threshold positive output (Y4Yc), test whether Yi is a
local maximum; (ii) if so, search over the previously
recorded times tj of positive steps, if any, in the range

1972 D. A. Smith Detection of edges in noisy time-series
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Figure 2. Examples of input and Y-output waveforms from the switching edge detector with uniform averaging. (a) Gaussian
noise input (unit variance) with a single step D�1 noise unit. (b) The signal component �(t)�(X+(t) 7 Xÿ(t))/� of the output
with W�100, giving a triangular response (solid line) as the forward and backward window averages (dashed line) rise through
the step. (c) The full output Y(t) (actual simulation) showing a response peaking within a few data points of the step. (d) Input
waveform with a short pulse of 50 data points, (e) corresponding signal output and ( f ) total output, also with W�100.
(g) Multiple binned detection of a single edge with E � W (simulation, D�0.5 and W�20). (h) True edge output (within the
signal triangle) deleted under binning by a false edge using a bin width W (simulated as in (g)). Dashed horizontal lines in
(c, f^h) mark the upper threshold, and bars the detection window of width 2W.
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i7E4 j5i for an additional maximum; and (iii) keep in
the record only the time with the highest maximum value
of Y (delete subsidiary maxima over the bin of width E).

These operations produce a list of the times of detected
positive steps, all separated by more than E data points.
An equivalent procedure with negative output (Y57Yc)
and local minima does the same for negative steps. As
positive and negative steps are binned independently, the
detection of a short pulse will be a¡ected by deletions in
the same way as single edges. However, repeated steps in
the same direction with spacings 4E will be removed.
What are the e¡ects of this binning procedure on true

and false output events, and how should E be chosen

relative to W? Apart from reducing multiple detection
events (¢gure 2g), there are three other e¡ects to consider
because false steps arising from noise can delete each
other, a false event can be deleted by a true one and a
true event by a false one. The last e¡ect (¢gure 2h) lowers
the e¤ciency of detection and should be avoided. If
E�2W, all multiple detections are eliminated because
output events from a single input step are con¢ned to a
time-interval 2W centred on the step time. However, the
deletion of true output by false output is signi¢cant and
so smaller values of E should be considered.With E � W,
simulations show that the e¤ciency of detection is higher
and the number of multiple events remains small. Errors
in the times of located steps are also reduced with the
smaller bin width. The e¡ect on the incidence of false
events is not large if one remembers that all events are
now separated by E time points or more. Hence the
probability of a false step should be de¢ned over a time-
interval E.

A better appreciation of the occurrence of multiple
detection events can be obtained from the distribution of
raw output for times within one window width of an
input step. Again, this is done by using the function
�(t), which drops from D to zero on moving away from
the edge, as the height of an equivalent edge. If E�2W
then two detections of the edge can arise only at the
outer ends of the double window and the probability of
both is P(Yc j0)2 where each event is equivalent to noise.
When E�W, two detections can arise in a number of
ways, the most probable being from times �W/2 away
from the edge. These events are not statistically
independent as their averaging windows overlap, but
their probability must lie between P(Yc jD/2) and its
square. Hence with W�20 and D/��1, the probability
of a multiple detection is (0.026)2�6.7�10ÿ4 if E�2W
and lies between 0.336 and (0.336)2�0.113 if E�W
(table 1). These estimates take no account of deletions
produced by binning, which lowers the incidence of
multiple events.

4. NUMERICAL TESTS, SCALING LAWS AND

AVERAGING METHODS

The statistics of binned logical output of the edge
detector cannot be analysed as simply as the raw output
Y(t), which is why raw output was used for comparisons
with the ideal case. However, the probabilities of true and
false output can be estimated by sampling large
populations of output events, and the results provide a set
of design curves which permit the detector to be used
with maximum bene¢t in speci¢ed situations. The detec-
tion of rectangular pulses whose width is comparable to,
or shorter than, W has also been investigated, and
statistics for the errors in the detection times of true steps
are presented. Scaling laws exist which connect the above
probabilities with di¡erent step sizes and window widths
and allow information to be displayed on a single curve.
As suggested in ½ 2, another scaling law connects the
detection e¤ciency of a short pulse with that of a long
pulse of reduced height. These laws combine to give an
optimum method of detecting short pulses. Finally,
di¡erent methods of taking averages in the two windows
are investigated numerically.

Detection of edges in noisy time-series D. A. Smith 1973
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Figure 3. The probability of above-threshold output as a
function of the threshold level Yc for various values of D/�
(step size relative to standard noise deviation), using window
widths (a) W�20, and (b) W �100. Full lines show output
from the ideal edge detector using equations (6 and 7), and
error bars with lines are from the switching edge detector
using synthetic input with r�50. Input waveforms of 20 000
points were obtained from a Gaussian random number
generator (Press et al. 1992) of unit variance plus steps of size
+10 at times 4W, 8W, ... and so on. As the detector responds
at time t to the quantity �(t) � X+(t)7Xÿ(t) of ¢gure 2b
which passes linearly from 10 to 0 in the time-intervals
(4W,5W ), (8W,9W ),. . ., responses equivalent to those from
steps as above were recorded as �(t) passed through the
values 5,4,3,. . .0. The number of above-threshold responses
was recorded in each case. This process was iterated 200 or
1000 times, respectively, with di¡erent random-number-
generator calls to generate 50 000 steps of each size. Error
bars represent the standard deviation expected from a
binomial distribution by using the sample mean.
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Table 1. The distribution P(Y jD) from equations (8 and 9), Y values within table

D

Y 0.0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0

(a)W�20
0.00 0.5000 0.6241 0.736 0.8286 0.8970 0.9431 0.9992 1.0000 1.0000
0.05 0.4396 0.5652 0.6844 0.7871 0.8670 0.9234 0.9987 1.0000 1.0000
0.10 0.3806 0.5048 0.6285 0.7401 0.8313 0.8989 0.9978 1.0000 1.0000
0.15 0.3246 0.4445 0.5697 0.6883 0.7900 0.8690 0.9965 1.0000 1.0000
0.20 0.2725 0.3856 0.5096 0.6326 0.7432 0.8335 0.9945 1.0000 1.0000
0.25 0.2252 0.3297 0.4495 0.5741 0.6917 0.7923 0.9914 1.0000 1.0000
0.30 0.1834 0.2777 0.3909 0.5143 0.6363 0.7458 0.9869 0.9999 1.0000
0.35 0.1471 0.2305 0.3352 0.4546 0.5782 0.6946 0.9806 0.9999 1.0000
0.40 0.1163 0.1886 0.2833 0.3964 0.5189 0.6397 0.9718 0.9997 1.0000
0.45 0.0908 0.1522 0.2362 0.3410 0.4597 0.5822 0.9599 0.9995 1.0000
0.50 0.0699 0.1211 0.1943 0.2894 0.4020 0.5234 0.9443 0.9991 1.0000
0.55 0.0532 0.0952 0.1577 0.2424 0.3471 0.4649 0.9245 0.9984 1.0000
0.60 0.0400 0.0740 0.1265 0.2005 0.2958 0.4078 0.8999 0.9974 1.0000
0.65 0.0298 0.0568 0.1002 0.1639 0.2491 0.3534 0.8702 0.9957 1.0000
0.70 0.0220 0.0432 0.0786 0.1323 0.2072 0.3026 0.8354 0.9931 1.0000
0.75 0.0161 0.0326 0.0609 0.1057 0.1704 0.2561 0.7955 0.9893 0.9999
0.80 0.0117 0.0243 0.0468 0.0836 0.1387 0.2143 0.7511 0.9839 0.9998
0.85 0.0084 0.0180 0.0357 0.0655 0.1117 0.1774 0.7028 0.9763 0.9997
0.90 0.0060 0.0133 0.0270 0.0509 0.0891 0.1455 0.6514 0.9661 0.9994
0.95 0.0043 0.0097 0.0203 0.0392 0.0705 0.1181 0.5981 0.9528 0.9990
1.00 0.0031 0.0071 0.0151 0.0300 0.0553 0.0951 0.5439 0.9358 0.9983
1.10 0.0015 0.0037 0.0083 0.0172 0.0334 0.0602 0.4371 0.8896 0.9953
1.20 0.0008 0.0019 0.0045 0.0097 0.0196 0.0371 0.3387 0.8262 0.9887
1.30 0.0004 0.0010 0.0024 0.0054 0.0114 0.0223 0.2537 0.7470 0.9760
1.40 0.0002 0.0005 0.0013 0.0030 0.0065 0.0132 0.1843 0.6563 0.9541
1.50 0.0001 0.0003 0.0007 0.0016 0.0037 0.0077 0.1304 0.5598 0.9203
1.60 0.0000 0.0001 0.0004 0.0009 0.0021 0.0045 0.0901 0.4641 0.8726
1.70 0.0000 0.0001 0.0002 0.0005 0.0011 0.0026 0.0611 0.3745 0.8113
1.80 0.0000 0.0000 0.0001 0.0003 0.0006 0.0015 0.0408 0.2947 0.7382
1.90 0.0000 0.0000 0.0001 0.0001 0.0004 0.0009 0.026 0.2268 0.6568
2.00 0.0000 0.0000 0.0000 0.0001 0.0002 0.0005 0.0175 0.1711 0.5715
2.10 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0114 0.1269 0.4867
2.20 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0073 0.0927 0.4061
2.30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0047 0.0669 0.3327
2.40 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0030 0.0478 0.2679
2.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0019 0.0339 0.2125

(b)W�100
0.00 0.5000 0.7602 0.9213 0.9830 0.9977 0.9998 1.0000 1.0000 1.0000
0.05 0.3629 0.6391 0.8560 0.9616 0.9934 0.9993 1.0000 1.0000 1.0000
0.10 0.2418 0.5021 0.7615 0.9218 0.9831 0.9977 1.0000 1.0000 1.0000
0.15 0.1470 0.3653 0.6407 0.8566 0.9616 0.9933 1.0000 1.0000 1.0000
0.20 0.0813 0.2442 0.5042 0.7624 0.9218 0.9830 1.0000 1.0000 1.0000
0.25 0.0409 0.1494 0.3679 0.6420 0.8566 0.9613 1.0000 1.0000 1.0000
0.30 0.0187 0.0834 0.2472 0.5063 0.7626 0.9213 1.0000 1.0000 1.0000
0.35 0.0078 0.0425 0.1524 0.3708 0.6430 0.8560 1.0000 1.0000 1.0000
0.40 0.0030 0.0198 0.0860 0.2507 0.5084 0.7624 1.0000 1.0000 1.0000
0.45 0.0010 0.0084 0.0445 0.1560 0.3740 0.6437 0.9999 1.0000 1.0000
0.50 0.0003 0.0033 0.0211 0.0892 0.2547 0.5104 0.9997 1.0000 1.0000
0.55 0.0001 0.0012 0.0092 0.0468 0.1601 0.3774 0.9990 1.0000 1.0000
0.60 0.0000 0.0004 0.0037 0.0227 0.0928 0.2590 0.9969 1.0000 1.0000
0.65 0.0000 0.0001 0.0014 0.0101 0.0496 0.1646 0.9914 1.0000 1.0000
0.70 0.0000 0.0000 0.0005 0.0042 0.0245 0.0969 0.9791 1.0000 1.0000
0.75 0.0000 0.0000 0.0002 0.0016 0.0113 0.0528 0.9546 1.0000 1.0000
0.80 0.0000 0.0000 0.0000 0.0006 0.0048 0.0267 0.9118 1.0000 1.0000
0.85 0.0000 0.0000 0.0000 0.0002 0.0019 0.0126 0.8456 1.0000 1.0000
0.90 0.0000 0.0000 0.0000 0.0001 0.0007 0.0055 0.7545 1.0000 1.0000
0.95 0.0000 0.0000 0.0000 0.0000 0.0003 0.0023 0.6427 0.9998 1.0000
1.00 0.0000 0.0000 0.0000 0.0000 0.0001 0.0009 0.5194 0.9993 1.0000
1.10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.2852 0.9942 1.0000

(Cont.)
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For this purpose, time-series were generated by using
Gaussian noise of unit variance (��1) plus edges of size
+D and 7D, repeated every 8W time points for
detection with windows of width W. The separation �
between each positive edge and the next negative one was
variable in the range (0, 4W), but was normally kept at
the upper limit, giving a mark^space ratio of 1. Binned
logical output was generated by using bin widths E�W,
1.5W and 2W, and window widths W�20 and 100 as
before. The numbers of detected edges of each kind were
counted, also the numbers that could be matched with
input edges were counted as follows. For each input edge
of given sign, a detected edge is counted as true if located
withinW time points of an input edge. Although detected
edges are always separated by E points, this rule permits
multiple detections of the same input edge if E52W
(¢gure 2g). If multiple events occur, only the nearer one
is counted true. In this way the probabilities of true and
multiple output events are sampled as

PT(D) � T(D)
N

, PM(D) �M(D)
N

, (10)

for N edges in the input and T true, M multiple edge
events in the output. Because the binning operations mix
true and false output, the probability of a binned false
output event has to be obtained from a separate
simulation using noise only, taking

PF(Yc) �
L(Yc)
NT=E

, (11)

for L binned positive output events (Y4Yc) in a run of
NTdata points and bin width E. This quantity is the rate
of false steps per bin. It is the analogue of PF in equation
(8) for unbinned output, and should be close to 0.5 when
Yc�0. The condition Yc�2D/3� (equation (9)) is used
throughout, and enables PF to be plotted together with PT
and PM against D although D has no direct meaning for
false output.

Figure 4 shows the results of these simulations for two
window widths plotted against the quantity DHW. The
curves coincide almost to the accuracy of the simula-
tions, suggesting that universal curves for each
probability exist at least in the limit of largeW. In other
words, a function �T exists such that the detection
e¤ciency is given by

PT(D,W,�) � �T
D
�

p
W

� �
(W441). (12)

The e¤ciency remains high at small step size because the
threshold Yc is scaled down in proportion. The penalty
for doing this is an increased probability of false output,
expressed per time bin of width E. However, the situation
for large steps can be recovered by a suitable increase in
window width. For example, steps of size D�� are
detected with 95% e¤ciency and an error rate of 15%
per bin from false steps and 2% from multiple steps if
E�W�20. The same con¢dence limits apply to steps of
size D��/3 if W is increased to 20�32�180. If the bin
width E is increased fromW to 2W+1, multiple steps are
eliminated but the rate of false steps per bin increases by
almost 20% (results not shown). As multiple events are
already a very small source of error, it is better to use the
smaller bin width. The key characteristics of the edge
detector are contained in this ¢gure.
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Table 1(b) (Cont.)

1.20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1233 0.9692 1.0000
1.30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0423 0.8930 1.0000
1.40 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0117 0.7395 0.9998
1.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0027 0.5265 0.9980
1.60 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.3143 0.9882
1.70 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.1565 0.9535
1.80 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0654 0.8690
1.90 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0233 0.7220
2.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0072 0.5317
2.10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0020 0.3420
2.20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.1917
2.30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0941
2.40 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0408
2.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0159

Figure 4. Sampled probabilities of true, false and multiple
output events as binned over one window width, for step sizes
D/��0.1(0.1)1.5 and W�20 (circle) and 100 (square). The
threshold is related to step size by Yc�2D/3�. When plotted
against Yc HW the curves superimpose to within sampling
error. With N steps, the estimated standard deviation for each
probability P is (P(1 7 P)/N)1/2 which is less than 0.5% for
N�10 000. This number of steps was contained in many
iterations (40 and 200 for W�20 and 100, respectively) of
waveforms of 20 000 data points with di¡erent random-
number calls.
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Figure 5 gives sample histograms for the location errors
of true output events. They show a signi¢cant central
peak at zero time error, plus wings localized in the range
(7W,W). The standard error is of order HW, which
increases less rapidly thanW. As the step size is reduced,
the central peak becomes less dominant and the
proportion of events in the wings increases. Thus most
location errors stay signi¢cantly smaller than the bin
width, even for small steps.

What changes in performance can be expected for
short pulses rather than single edges? The averaging
operations intrinsic to this form of edge detection imply
that the signal component �(t)/� of the output is
reduced when the pulse width � is less than W (¢gure
2e), so the most probable value of the peak output is
reduced as an averaging window overlaps both edges. In
this situation, the detection e¤ciency can be kept high
by scaling down the threshold. For ¢gure 6, this was
done by choosing

Yc �
�

W
2D
3�

, (�5W), (13)

which is equivalent to using equation (9) with D replaced
by Deq�(�/W)D for �5W and Deq�D otherwise. Hence

the scaling relation (12) for the detection e¤ciency of a
single edge generalizes to pulses of width �

PT(D,W,�,�) � �T

Deq

�

p
W

� �
, (W441), (14)

giving a universal curve as a function of DeqHW/�. This
prediction is imperfectly realized because of binning
e¡ects (¢gure 6), but the curves for di¡erent pulse widths
overlap su¤ciently that the approximation of a single
universal curve is good enough for practical purposes.
By lowering the threshold for short pulses below that in

equation (11), the detection e¤ciency remains high. The
parameter DeqHW/� should then be set as large as
possible to minimize the occurrence of false output, as in
¢gure 4. For a pulse of given size and duration, this must
be done by changing the window width. The inset of
¢gure 6 shows that this parameter reaches a maximum
value of DeqH� /� when

W � � , (15)

which is the condition for optimal detection of pulses of
width �. This occurs because windows larger than � give
reduced output from one window overlapping both edges
of the pulse, while smaller ones give less ¢ltering and
more output noise.

The performance of the detector also varies with the
method of taking averages and variances. Equation (1)
takes an unweighted average in each window, but it has
been suggested that averages weighted away from the
central sampling point (Canny 1986), or towards it
(Castan et al. 1990), are better in some sense. There may
also be an advantage in using median averaging which
preserves the shape of an edge as the windows pass
through (Gallagher & Wise 1981). These alternatives have
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Figure 5. Histograms of the errors �t in location times of
detected steps classi¢ed as true output (within one window
width of the input step), for W�20 and two step sizes gener-
ated as for ¢gure 4. Better localization as a fraction of W is
achieved with larger windows (results not shown). There are
nearly 10 000 steps in each histogram.

Figure 6. The detection e¤ciency (probability of true binned
output events) for pulse widths ��80 (circle), 20 (square), 10
(triangle), 5 (diamond) and 1 data point (circle), various step
sizes and W�20. Results are plotted against DeqHW where
the equivalent step size Deq��D/W for �5W or D otherwise,
and the output threshold was set at 2Deq/3� in all cases. The
proximity of the curves show that scaling with respect to
DHW extends approximately to short pulses when D is
replaced by Deq and the threshold lowered accordingly. False
steps are minimized by maximizing the abcissa with respect to
W, which occurs when W�� (see inset). Results for W�100
scale similarly.
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been investigated numerically by using ramp and
triangular functions for window averaging, and with
median averaging for Xi+ and Xi7 (but not for the
variances). Results for the case E�W are shown in ¢gure
7 and rank as follows. With the same window width,
there is little di¡erence between most methods using
binned thresholded output. Ramp averaging, which
favours output closer to the input step, has the highest
detection e¤ciency (¢gure 7a) and the best location
accuracy (¢gure 7b), but also a signi¢cantly higher rate of
false output than the others and twice as many multiple
detections. Its overall performance cannot be improved
by changing the bin width; with E�1.2W, multiple
output is halved, but the rate of false output per bin is
even higher. Median averaging in conjunction with the
switching method yields no improvement, and can give
larger location errors for small steps. It appears that the

best performance is achieved by using uniform averaging,
which has the smallest rate of false output.

The switching edge detector of this paper uses window
averages Xi+, Xi7 at time ti in the second equation of
(1) to calculate variances in the forward and backward
windows. This gives better results than using displaced
averages Xi+k, Xiÿk, as was done by Chung & Kennedy,
and also allows the distribution of the output function
(2) to be calculated from ¢rst principles for edges in
Gaussian white noise.

5. USAGE

A procedural problem with the predictors of ¢gure 4
is that their values are dependent on the size of steps in
the time-series and the durations of any short-lived
stepped regions: neither of these may be known in
advance, but this information is required to choose
optimal settings of the threshold output Yc and the
window width W. For any given Yc and W, each above-
threshold peak in the output is automatically interpreted
as a step. If this step is present in the input, ¢gure 8
shows that a peak of height Y should correspond to a
step size D approximately equal to �Y where � is the
standard noise deviation. If the peak height is 50%
higher than the threshold (Y41.5Yc), the middle curve
in ¢gure 4 gives the probability that this peak is false.
For bigger peaks the curve is an upper estimate.
However, the detector is instructed to count all peaks in
the range Y4Yc as detected edges, and for those with
Yc5Y51.5Yc the chance that the peak arises from noise
is higher and its interpretation is in doubt.

To proceed further would require estimates for the
size of each detected step. This can be done from the
output list of step times, for example by averaging the
input between adjacent steps if the input signal between
adjacent steps is constant. Thus, doubtful peaks could
be identi¢ed and con¢dence limits supplied by
constructing design curves for values of the ratio D/�Yc
below 1.5.

Detection of edges in noisy time-series D. A. Smith 1977
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Figure 7. (a) Comparative performances for sampled output
probabilities and (b) the standard location error for true
output, by using di¡erent window-averaging functions fk
such that

Xi� �
XW
k�1

f
k
Xi�k,

also median averaging. Simulations were made as for ¢gure
5. All plots in (a) are for W�20. The averaging function fk
equals 1/W (£at), 2(W7k)/W 2 (ramp) or the two-piece
function 4k/W for k5W/2 and 4(W7k)/W2 for W/25 k5W
(triangular). These functions are normalized to unity over the
window when W441.

Figure 8. Distributions of the output variable Y as calculated
from equations (7 and 8) for the ideal edge detector, for
window widths and step sizes relative to noise as shown. The
integral in equation (8) was computed recursively from
equation (A6). Note that the selectivity of the responses to
steps (D40) and noise (D�0) increases with W.
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A simpler approach is to run the detector with a
sequence of increasing window widths to reduce the
probability that these peaks are false (¢gure 4); this
method is recommended as a way of con¢rming the
original output list when a range of step sizes is expected.
For example, with the optical trap data in ¢gure 1a, runs
with D/� set at 1.0 and W�20(10)100 gave convergent
numbers of detected steps only forW580 (four up, four
down) with essentially the same location times (di¡ering
by 15 time points at most), con¢rming that steps of this size
are sparse. This procedure could then be repeated with a
lower threshold to reveal smaller steps. In this case, the
output list should not be expected to con¢rm the original
detection of large steps, because the output noise level is
higher and false peaks may delete true peaks after binning.
Finally, time resolution is limited by the window width; a
pulse containing less thanW data points gives less output
than two well-separated steps of the same magnitude and
may not be detected unless the threshold is lowered again.
If output lists fail to converge at largeW, the detected steps
may not be sparse on this time-scale.

Repeated averaging is possible by using the ¢ltered
output function Xout�g+X++g7X7 de¢ned by Chung &
Kennedy (1991) as input for a second pass. This has not
been studied in detail, but may be a useful way of
reducing false output.

To summarize, for sparse edges the threshold should be
set at two-thirds the smallest edge size of interest, and the
window width for the desired level of reliability. The
Fortran program in Appendix B incorporates this rule of
thumb by asking for a minimum edge size.

6. DISCUSSION

The switching technique of Chung & Kennedy (1991)
has been applied to edge detection by de¢ning an output
function of known statistical distribution which peaks
near edges in the input waveform, leading to logical
output for detected steps and their locations. Statistical
predictors for its e¤ciency, reliability and accuracy in
locating edges are generated for sharp edges in Gaussian
white noise input. Hence it should be an appropriate tool
for detecting force or displacement steps from single
motor proteins or single-channel ion currents from
membranes, where the noise arises from Brownian
motions and the steps from single chemical-kinetic events.
Its e¤ciency and reliability have not been tested with
other kinds of noise input. Detectors based on window
averaging and classical variance constructs may be
sensitive to `wild' points in the data, which can be avoided
by using median averaging (Kirlin & Moghaddamjoo
1986). Although the modi¢ed switching edge detector is
of this kind, the existence of a threshold makes it
insensitive to `wild' points in the data, which are
equivalent to very short pulses and not e¤ciently detected
unless special measures are taken as discussed.

In ½ 5 there is a practical, but somewhat makeshift,
approach to con¢dence limits for assigning steps to output
events when the step sizes are not known. A better
approach is to use Bayesian methods to estimate the
distribution of step sizes from a given peak output. A
practical solution lies beyond the scope of this paper, but
a start can be made from the formula

p(DjY) � p(YjD)p(D)�
p(YjD)p(D)dD

, (16)

in terms of the distribution of equation (A5) and the
distribution p(D) of step sizes from an ensemble of time-
series. Of course the latter distribution is not known, but
recursive methods for generating it from the output
should be possible.

Alternative approaches to edge detection exist which
avoid estimating the likelihood of individual edge events.
They require a known mechanism for generating all
edges in the time-series, for example, a Markov process
giving kinetic transitions between discrete states. In that
case, the parameters of the mechanism (rate constants,
for a Markov process) can be sought by maximizing the
likelihood of the whole time-series (see, for example,
Horn & Lange 1983; Rabiner 1989; Fredkin & Rice
1992). However, in practice the mechanism may not be
fully known or competing mechanisms may be at work.
For example, the application to displacement steps from
single motor proteins is complicated by overlapping
events which generate waveforms with ramps as well as
steps (Finer et al. 1994), and may change the operation of
the force mechanism. Slow ramps can be observed in the
¢ltered output function Xout�g+X++g7X7 de¢ned by
Chung & Kennedy (1991), but not in the function Y.
However, a localized ramp between regions of constant
signal will appear as an edge at low time resolution and
can be detected as such after ¢ltering out the more rapid
components.

I thank Dr Jimmy Boyce and Dr DarrenToulson of the imaging
group of the Department of Physics, King's College London for
a helpful discussion, and Alberto Trombetta of the Randall
Institute for permission to display a fragment of his trap data
using the muscle proteins. This work was supported by a grant
from theWellcomeTrust.

APPENDIX A. THE IDEAL DISTRIBUTION OF Y

Equation (4) de¢nes the quantity Y as the di¡erence of
two averages of an input with signal and noise divided by
the variance of the noise only. It is convenient to separate
the numerator into signal and noise components, giving

Y � X� ÿ Xÿ ��
S

, (A1)

where � is the signal component as discussed in ½ 2, and
X� and S 2 are now the averages and variance of Gaus-
sian white noise over windows of width W. Note that X+
and X7 are not identical since they are calculated in
di¡erent windows. The distributions of these noise
variables follows by combining Gaussian distributions of
variance �2 for the individual variates xi.

The derivation can be summarized in terms of gamma
variates as described byWeatherburn (1968). Each variate
�x2/2�2 has the distribution (�)ÿ1=2 exp(7). The
quantity x+� has a shifted Gaussian distribution and so
the quantity �(x+�)2/2�2 has a shifted gamma
distribution given by
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�(j�)� 1

(�)1=2
exp(ÿ ÿ b2)cosh(2b1=2), b � �p

2�

� �
.

(A2)

Consider the numerator of (A1). The quantity X+7X7 is
1/W times the sum or di¡erence of 2W independent
Gaussian variates of zero mean and unit variance, and
therefore has zero mean and variance equal to 2�2/W.
Hence the quantity

 � W
4�2

(X� ÿ Xÿ ��)2, b � �
p
W

2�

� �
, (A3)

is distributed as in equation (A2). This accounts for the
square of the numerator in (A1).

The square of the denominator is the variance asso-
ciated with just one window, and its mean value is just
�2/W. Hence, by well-known arguments (Weatherburn
1968), the quantityWS 2/2�2 is the sum ofW71 unshifted
gamma variates and is itself a gamma variate of degree
m�(W71)/2 with the distribution �m()� mÿ1

exp(7)/G(m).
The quotient of these two quantities is equal to Y 2/2. It

can be shown that the numerator and denominator are
statistically independent and hence the distribution of the
quotient can be calculated from the joint distribution,
which is factored. The details follow the analogous
calculation for the unshifted case ��0, which yields
Student's distribution for the quantity t�((W 7 1)/2)1/2Y
with W71 degrees of freedom (Weatherburn 1968). In
this way, the distribution function of the quantity v�Y 2/2
is found to be

exp(ÿ b2)
ÿ(1=2)ÿ(m)

vÿ1=2

(1� v)m�1=2

Z 1
0
umÿ1=2exp(ÿu)cosh 2b

���������
uv
1� v

r� �
du.

(A4)

To convert this result to a two-sided distribution for Y,
the distributions of positive and negative values can be
separated as for the case ��0, giving

p(Yj�) � 1������
2�
p exp(ÿ b2)

ÿ((W ÿ 1)=2)
1� Y 2

2

� �ÿW=2Z 1
0

uW=2ÿ1

� exp ÿu� 2bY
p
u��������������

2� Y 2
p

� �
du,

(A5)

where b�W1/2�/2�. This result is equivalent to the biased
t-distribution (Patnaik 1949). With no step, equation (A5)
collapses to a scaled version of the Student's t-distribution

p(Yj0)� 1������
2�
p ÿ (W=2)

ÿ((Wÿ1)=2) 1�Y
2

2

� �ÿW=2

,(ÿ15Y51),

(A6)

where G(x) is the gamma function.
The distribution (A5) is shown in ¢gure 8 for a range of

values of � and two values of W, setting ��1. The most
probable value of Y is close to �/�. To discriminate edges
of size D from noise, the distributions with ��0 and

��D must be well-separated; forW�20 this is achieved
when D/�51 and for W�100 when D/�50.5. Thus
selectivity increases with the size of the averaging window.
The integral in (A5) can be computed recursively

after rewriting in the form H�exp(z2)FW71(7z) where
z�bY=H(2+Y2) and

Fn(z) �
2p
�

Z 1
z

(wÿ z)nexp(ÿ w2)dw, (A7)

is a repeated integral of the error function. It can be
computed from the recursion relation

Fn(z) � (nÿ 1)Fnÿ2(z)=2ÿ zFnÿ1(z), (A8)

where F0(z)�erfc(z) and F1(z)�7zF0(z)+exp(7z2)/H�.
The moments of Y can be found more directly from

the de¢nition (A1), equivalent to Y�Yo+�/S where Yo
arises from noise only and is distributed according to
equation (A6), with zero mean and variance 2/(W73).
As stated above, S�(2/W)1/2� where the distribution of
 is the function �m() with m�(W71)/2. Hence the ¢rst
and second moments of 1/S are

(Sÿ1)� W
2�2

� �1=2
ÿ((Wÿ 2)=2)
ÿ((Wÿ1)=2) , (Sÿ2) � 1

�2
W

W ÿ 3
.

(A9)

Thus the mean value is given by

Y � �(Sÿ1) � �
�

(W441), (A10)

as stated in the main text, and the variance is

�Y2 � Y2 ÿ (Y)2 � Y2
o ��2(Sÿ2)ÿ (Y)2

� 2
W
� 1
2W

�

�

� �2

, (W441).
(A11)

Hence for large steps (�44�) the corresponding
standard deviation is much less than the mean when
W441. For small steps (�/�552) the standard deviation
is independent of step size and is less than the mean when
�44(2/W)1/2�.

APPENDIX B. COMPUTER PROGRAM

PROGRAM sed
C motil/edge
C Switching edge detector for noisy time series (July

1997)
C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C Reads X input ¢le (ASCII format) for function X(t).
C Requests minimum step size relative to noise, window

width.
C Output ¢le sed.dat gives ¢ltered output XX(t) and

statistical output Y(t). Times and signs of edges listed in
sed.out.

C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT INTEGER*4 (I-N)
INTEGER*4 E,R,W,PSI
PARAMETER (NP�20001, KP�2000, R�50,
EOW�1.0)
CHARACTER*15 FNAME
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Phil.Trans. R. Soc. Lond. B (1998)

 rstb.royalsocietypublishing.orgDownloaded from 

http://rstb.royalsocietypublishing.org/


DIMENSIONX(7151:NP+151),XP(NP+151),XM(7151:NP),
XX(NP),Y(NP),K(KP),PSI(KP),KU(0:KP),KD(0:KP)
WRITE(6,*) `Enter name of data-¢le (including.DAT)'
READ(*,1) FNAME

1 FORMAT (A)
OPEN(1,FILE�FNAME,STATUS�'UNKNOWN')
DO J�1,NP
READ(1,*,END�2) X(J)
END DO

2 CLOSE(1)
N�J71
WRITE(6,*) `N�',N
WRITE(6,*) `Enter no. of input lines (5N)'
READ(6,*) NT
WRITE(6,*) `Enter (min. step size)/noise, window
width'
READ(6,*) D,W
E�INT(EOW*W)
FW�FLOAT(W)
YC�0.6666667*D
WRITE(6,*) `YC�',YC

C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C Extend time series byW points at each end.

DO I�1,W
X(1-I)�X(I)
X(N+I)�X(N7I)
END DO

C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C Form pre-and post-averages XP(J), XM(J).

DO J�1,N
XAP�0.0
XAM�0.0
DO I�1,W
XAM�XAM+X(J7I)/FW
XAP�XAP+X(J+I)/FW
END DO
XP(J)�XAP
XM(J)�XAM

C also running variances and switch factors to get XX,Y
SP�0.0
SM�0.0
DO I�1,W
SM�SM+(X(J7I)7XM(J))**2/FW
SP�SP+(X(J+I)7XP(J))**2/FW
END DO

C Form switching functions, etc
RSP�SP**R
RSM�SM**R
GM�RSP/(RSP+RSM)
GP�RSM/(RSP+RSM)
XX(J)�GP*XP(J)+GM*XM(J)
Y(J)�(XP(J)7XM(J))/SQRT(GP*SP+GM*SM)
END DO

C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C Search for maxima/minima inYand decimate smaller
C extrema with separations less than E.
LU�0
LD�0
DO J�2,NT71
YJ�Y(J)

C Maxima ¢rst. . . ..
IF (YJ.GT.YC) THEN
YP�Y(J+1)

YM�Y(J71)
IF (YJ.GT.YP.AND.YJ.GT.YM) THEN !new
maximum

C Now test for adjacent maximum, and delete the lower one.
IF (LU.EQ.0.OR.(LU.GE.1.AND.(J7KU(LU)).GT.E))
THEN LU�LU+1 !no old maximum within E points
ELSE !old maximum exists
IF (YJ.LT.Y(KU(LU))) GO TO 3 !reject new
maximum

C (if false, overwrite old one by leaving LU unchanged)
END IF
KU(LU)�J

3 CONTINUE
END IF
END IF

C Now minima. . . ..
IF (YJ.LT.7YC) THEN
YP�Y(J+1)
YM�Y(J71)
IF (YJ.LT.YP.AND.YJ.LT.YM) THEN !new minimum

C Now test for adjacent minimum, and delete the higher
one.

IF (LD.EQ.0.OR.(LD.GE.1.AND.(J7KD(LD)).GT.E))
THEN LD�LD+1 !no old minimum within E points
ELSE !old minimum exists
IF (YJ.GT.Y(KD(LD))) GO TO 4 !reject new
minimum

C (if false, overwrite old one by leaving LD unchanged)
END IF
KD(LD)�J

4 CONTINUE
END IF
END IF
END DO

C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C Put up/down steps into K(L),PSI(L)

DO L�1,LU
K(L)�KU(L)
PSI(L)�1
END DO
DOL�LU+1,LU+LD
K(L)�KD(L7LU)
PSI(L)�71
END DO
L�LU+LD
WRITE(6,*) `L,LU,LD�',L,LU,LD

C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
LL�L
OPEN(2,FILE� s̀ed.dat',STATUS�`UNKNOWN')
DO J�1,NT
WRITE(2,5) XX(J),Y(J)

5 FORMAT(2(1X,E14.6))
END DO
CLOSE(2)
OPEN(2,FILE� s̀ed.out',STATUS�`UNKNOWN')
DO L�1,LL
WRITE(2,6) K(L),PSI(L)

6 FORMAT(I7,2X,I5)
END DO
CLOSE(2)

C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
STOP
END
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